10 необычных явлений, мысленных экспериментов и парадоксов квантовой механики
03.07.2013 12:50
—
Калейдоскоп
|
1 июля в России впервые удалось произвести измерение кубита (квантого бита), способного, в отличие от обычных битов, для которых характерно два состояния-либо «один», либо «ноль», — принимать бесконечное множество состояний. В результате была экспериментально подтверждена возможность кубита находиться в суперпозиции двух состояний одновременно, что с точки зрения квантовой механики близко к парадоксу. Предлагаем вам подборку ещё десяти необычных явлений из области квантовой механики. 1. Кот ШрёдингераВ 1935-м году физик Эрвин Шрёдингер провёл мысленный эксперимент, получивший впоследствии название «Кот Шрёдингера» — выдвинутая им теория послужила предметом широкой дискуссии в научных кругах и сейчас применяется в квантовых вычислениях и в квантовой криптографии. ![]() Эрвин Шрёдингер Шрёдингер задался целью доказать, что, при наблюдении за макроскопическими системами, возникающей в таких случаях неопределённости можно избежать, осуществляя прямое наблюдение за объектом. Краткое изложение его умозаключений такова: некоего кота нужно поместить в герметичную коробку с находящейся внутри адской машиной, которая при определённых условиях испускает синильный газ, ядовитый для живых организмов. В той же коробке находится очень малое количество радиоактивного вещества, и один атом может либо распасться в течение следующего часа, либо с той же долей вероятности не распасться. Если в это время не производить никаких прямых наблюдений, то есть не открывать коробку с котом, то можно предположить, что кот всё это время может как оставаться живым, так и погибнуть. Соответственно, пока эксперимент не подтверждён, кот остаётся одновременно и живым, и мёртвым — до тех пор, пока мы не откроем коробку и не увидим результат. Суть в том, что в природе такого не бывает, и это касается как живых организмов, так и атомов — ядро может быть или распавшимся, или не распавшимся, а промежуточное состояние невозможно. Однако до осуществления прямого наблюдения атом и кот находятся в состоянии, называемом суперпозицией, — иначе говоря, в двух состояниях одновременно. 2. Парадокс КлейнаПредставьте задачу: релятивистскую частицу необходимо переместить через потенциальный барьер, при этом потенциальная энергия частицы меньше высоты барьера — другими словами, энергии для преодоления барьера стандартным путём частице не хватит. С точки зрения классической механики такое явление невозможно, однако, согласно квантовой механике частица всё же может преодолеть барьер. Точнее, не совсем так: дело в том, что при задействовании определённой энергии при сильном поле произойдёт рождение второй, парной частицы, или античастицы, которая возникнет как раз по другую сторону барьера. 3. Квантовый парадокс Зенона![]() Алан Тьюринг Если постоянно осуществлять наблюдение за нестабильной квантовой частицей, то она никогда не сможет распасться, иными словами, наблюдая за частицей, мы так или иначе вносим изменения в её состояние, например, сообщаем ей энергию или дополнительный импульс: чем стабильнее состояние частицы, тем с большей вероятностью она распадётся. Впервые эффект описал Алан Тьюринг ещё в 1957-м году, однако на практике это явление удалось пронаблюдать только в 1989-м — эксперимент провёл Дэвид Вайнленд: как только на атомы воздействовали с помощью ультрафиолетового излучения, их переход в двухуровневое (возбуждённое) состояние подавлялся. 4. Корпускулярно-волновой дуализмПринцип этой концепции состоит в том, что объект может проявлять одновременно как волновые свойства, так и корпускулярные: например, свет представляет собой волны определённой длины, во многих случаях проявляющие электромагнитные свойства, но точно так же свет можно представить и в виде элементарных частиц — фотонов, то есть свет проявляет и корпускулярные свойства. С точки зрения обычной физики это не логично, однако в квантовой физике такая ситуация допустима и, более того, в случае со светом корпускулярные и волновые свойства взаимно дополняют друг друга. Сейчас корпускулярно-волновой дуализм по большей части является предметом теоретического интереса, поскольку квантовые объекты нельзя назвать ни частицами, ни волнами в классическом понимании. 5. Квантовая запутанностьПринцип квантовой запутанности состоит в том, что при взаимодействии только на одну частицу из определённой группы частиц изменяется состояние не только того объекта, на который воздействуют напрямую, но и всех остальных объектов этой группы. Следовательно, объекты взаимосвязаны, и их связь остаётся постоянной даже тогда, когда они находятся на значительном расстоянии друг от друга или в совершенно разных условиях. Для примера возьмём пару фотонов, находящихся в запутанном состоянии: если изменить спиральность спина первого фотона с положительного на отрицательную, то спиральность второго фотона всегда будет отрицательной. Если же снова изменить спиральность первого фотона на отрицательную, то второй фотон приобретёт положительную спиральность. 6. Квантовая телепортацияТелепортация в квантовой механике значительно отличается от телепортации, описанной в фантастических произведениях — при квантовой телепортации невозможно передать на определённое расстояние энергию или вещество. В этом случае передаётся состояние квантовой частицы при наличии другой, запутанной частицы: в точке передачи это состояние разрушается, а в точке приёма — воссоздаётся. Обратите внимание, что разрушаются не частицы, а только их состояние в момент отправки/приёма — это не передача в прямом смысле, а скорее копирование. Передача осуществляется не по квантовому каналу, а по обычному, и не может быть быстрее скорости света. 7. СверхтекучестьЕсли температуру вещества в состоянии квантовой жидкости охладить до состояния, близкого к абсолютному нулю, то вещество приобретёт способность протекать через узкие каналы вроде, например, капилляров, без трения. Научное обоснование явления таково: атомы вещества в состоянии квантовой жидкости (например, такую форму часто принимает гелий-3) — бозоны, и с точки зрения квантовой механики любое число её частиц может находиться в одинаковом состоянии. Чем ближе температура к абсолютному нулю, тем большее число атомов находится в одном энергетическом состоянии, и при сверхнизкой температуре энергия столкновений может быть очень мала, так что рассеяния энергии в зазорах между атомами не произойдёт — поскольку энергия не рассеивается, то и трения не будет. До недавнего времени считалось, что подобное состояние характерно только для жидкого гелия, однако не так давно оказалось, что оно присуще и твёрдому гелию, а также другим веществам, основу которых составляют бозоны, температура которых близка к абсолютному нулю. 8. СверхпроводимостьСверхпроводимость — квантовый эффект, при котором электрическое сопротивление частиц равно нулю при достижении критической температуры (близкой к абсолютному нулю), иными словами, электрический ток проходит через подобные материалы, практически не встречая сопротивления. Явление получило широкое практическое применение: в частности, существуют так называемые сверхпроводники — как правило, керамики, также к ним можно отнести жидкий азот, температура которого — 77°К. 9. Теорема о запрете клонированияСогласно квантовой теории, создание точной копии любого неизвестного квантового состояния невозможно. Клонирование в классическом понимании представляет собой точную копию, но в квантовой механике под клонированием подразумевается создание состояния, состоящего из нескольких исходных состояний двух и более групп частиц. Как известно, группы частиц могут быть сцеплены между собой, и энергия между ними может быть взаимосвязана. Тем не менее, передать энергетическое состояние с абсолютной точностью от одной группе к другой невозможно, поскольку это противоречит принципам квантовой запутанности, однако создание не полностью идентичной копии всё же возможно. 10. Парадокс Эйнштейна — Подольского — Розена
Представим, что две частицы одновременно образовались после распада исходной частицы: согласно закону сохранения импульса, суммарный импульс получившихся частиц должен быть равен импульсу исходной частицы. Следовательно, мы можем измерить импульс одной из образовавшихся частиц и по простой формуле рассчитать импульс второй частицы, образовавшейся одновременно с ней. Далее у нас появляется возможность измерить импульс второй частицы, который мы уже рассчитали, и таким образом получить для неё значения двух величин, измерить которые одновременно невозможно, согласно законам квантовой механики. Полина Кормщикова Чтобы разместить новость на сайте или в блоге скопируйте код:
На вашем ресурсе это будет выглядеть так
1 июля в России впервые удалось произвести измерение кубита (квантого бита), способного, в отличие от обычных битов, для которых характерно два состояния-либо... |
|